Reproduction of ''"Tracking the World State with
Recurrent Entity Networks"

Mehrnaz Mofakhami Amirhossein Yavari
* T
Department of Mathematical Sciences Department of Mathematical Sciences
Sharif University of Technology Sharif University of Technology
Tehran, Azadi avenue Tehran, Azadi avenue
m.mofakhami.77@gmail.com poria.y@protonmail.com
Abstract

Here we reproduce the results of Henaff et al., (2017) proposed model (EntNet)
to track semantic entities across a textual medium which represent the "state of
the world". We measure and report the performance of our implemented EntNet
on bAbi data-set and compare our results with those reported in the original pa-
per. Our implementation is available at https://github.com/mhrnz/entnet
bAbI_reproduction/.

1 Summary and Quick Review of EntNet

EntNet is a memory-augmented network that learns to track the state of the world through a set of
higher representations, referred to as the dynamic memory. It is claimed that each element of this set
could be used to represent a single entity or concept. EntNet consists of three main parts, an input
encoder, the dynamic memory and an output layer.

The input encoder summarizes an element of the input sequence with a vector of fixed length,
the specific architecture used in the paper is a learned sequential multiplicative mask followed by a

summation:
St = Z Ji©e (1

where e; is a sequence of word embeddings and f; are trainable vectors. The authors suggest that
the type of the encoder used is not an rudimentary part of the architecture and other architectural
choices might as well work, namely recurrent neural networks.

The dynamic memory is a gated recurrent network with a (partially) block structured weight tying
scheme. The hidden states of the network are divided into blocks A1, ..., h,, and the full hidden state
isthe concatenation of these blocks. In the original paper m is set between 5 to 20, and each block is
a vector of 20 to 100 dimensions. The gating mechanism works as follows: At each time step ¢, the
content of the hidden states {; } (which we will call the jth memory) are updated using a set of key
vectors {w;} and the encoded input s;. In its most general form, the first time an entity appears, it
is written to a memory slot. Every time that an event occurs in the story that changes the state of an
entity, the change in the state of that entity is mixed with the entity’s previous state using a varient of
GRU update equation and then rewritten to the same slot. To make the job of model in identifying
meaningful entities easier, it is suggested that the keys be initialized with vectors that are near to the
embedding of words representing important objects or concepts.

*Contributions include implementation of EntNet code and writing this extended abstract.

fContributions include ideas regarding implementation and technical details, debugging and writing this
extended abstract.


https://github.com/mhrnz/entnet_bAbI_reproduction/
https://github.com/mhrnz/entnet_bAbI_reproduction/

Table 1: Comparison of Results

Task Number
1 2 3 4 5 6 7

Henaff et al., (2017) 0 3 96 338 17 0 0.5
Our Implementation 0 19.6 79.6 0.3 153 152 35

Output layer Whenever the model is required to produce an output, it is presented with a query
vector ¢, which for example in the question answering setting is a representation of the question.
The representation is probably encoded by the same encoder that is used to update internal states to
ensure the internal consistency of representations. The method of the querying is to use a form of
standard single-head attention to read relevant information from the stored entity slots based on the
query. Then the result of the query is passed through a classifier and assessed.

2 Reproduction Settings and Implementation Choices

We preserved training detail mentioned in the paper in our reproduction. Models were trained with
ADAM optimizer for at most 200 epochs with mini-batch size equal to 32. Learning rate was set
initially to 0.01, but was divided by 2 every 25 epochs. The maximum number of hidden entities, m,
was set to 20, and the dimension of each of them was set to 100. All model weights were initially
drawn from a Truncated Normal distribution with mean 0 and standard deviation 0.1. We also used
gradient clipping with clip value of at most 1. For all tasks except for task 3, the capacity of the
memory was limited to the most recent 70 sentences, and for task 3 it was limited to the most recent
130 sentences. Moreover, our input encoder follows equation [Il.

The paper have not mentioned how to assign key values specifically. Therefore, we chose to tie key
vectors to entity embeddings and our method is as follows. For each paragraph, we derived words
with specific tags (e.g. nsubj and pobj) and chose at most 20 of them to act as keys. In this way, keys
are updated alongside hidden states during the training, and are always tied to specific words of the
paragraph.

3 Results

Validation error rates on bAbI tasks where key vectors are tied with entity embeddings are reported
in Table . Since we used keys tied to entities, we compare our results with Table 5 of the paper.

4 Difficulties

The most important challenge we faced was regards to the key vectors, as the paper have not dis-
cussed it in detail. Henaff et al., (2017) mentioned that tying keys did not significantly change
performance, and even hurt it in some cases, but did not mention the baseline it is comparing this
method to. Our observation was that tying keys in the way we described in section 2 performed much
better than randomized fixed keys, which is intuitive, since important entities in each paragraph are
being tracked.

References

[1] Mikael Henaff. & Jason Weston. & Arthur Szlam & Antoine Bordes & Yann LeCun (1995) Tracking the
World State with Recurrent Entity Networks., ICLR 2017,



	Summary and Quick Review of EntNet
	Reproduction Settings and Implementation Choices
	Results
	Difficulties

